What's AIN?

Features

- 1. High thermal conductivity (about 10 times that of alumina)
- 2. Close thermal expansion coefficient to that of Silicon (Si)
- 3. High insulation
- 4. High mechanical strength (higher than alumina)
- 5. High corrosion resistance (non-wetted by most molten metals)
- 6. High purity (does not contaminate molten metal even at a high temperature)
- 7. Transparency (allows visible to infrared light to pass through easily)
- 8. High halogen-plasma resistance

Applications

Semiconductor manufacturing equipment

Plasma device parts

(Electrostatic) wafer chuck parts

Stepper wafer holding jig, etc.

Transportation

IGBT and GTO heat sink for

Automotive power supply substrate (for hybrid cars, etc.) Electric train and locomotive power supply substrate

Communication

Laser diode heat sink for

Transmitters and amplifiers for optical fiber communication

Lighting and display

LED heat sink

Information processing

Heat dissipation sheet

Computer heat sink

Laser diode heat sink for

Optical disk pickup (CD-R, DVD, etc.)

Industrial machinery

IGBT heat sink for

Various types of inverter control power supply

High-performance elevator

High-performance mill

Differences among ceramic materials

Comparison of thermal conductivity

AIN has high thermal conductivity outstandingly among various substrate materials.

Comparison of halogen-plasma resistance

SiC <

Si₃N₄ Silicon nitride Al₂O₃

AIN
Aluminum nitride

Comparison of thermal expansion coefficient

■ AIN has a thermal expansion coefficient close to that of various semiconductor substrate materials. Metals with large thermal expansion coefficients are not suitable for the mounting of large semiconductor devices. AIN has an advantage on thermal expansion coefficient.

Feel free to ask us anything about AIN!

